
Theories and calculations 
 
Nuclear energy density functional theory 
According to the basic theorems of the density functional theory (DFT) [1], all 
the physical quantities at the ground state of many-body systems can be given by 
functionals of one-body density 𝜌(𝒓). In nuclei, there are two kinds of particles, 
protons and neutrons, thus, they are functionals of proton and neutron densities, 
𝜌%(𝒓) and 𝜌&(𝒓). We start from a given energy density functional 𝐸(𝜌%, 𝜌&*, and 
try to find the density distributions, 𝜌%(𝒓) and 𝜌&(𝒓), which minimize the energy. 
In a variational form, it is given by 

𝛿 ,𝐸(𝜌%, 𝜌&* − 𝜇% /𝜌%(𝑟)𝑑𝑟 − 𝜇& /𝜌&(𝑟)𝑑𝑟2 = 0	, (1) 

where 𝜇% and 𝜇& are the Lagrange multipliers to fix the numbers of protons and 
neutrons. Equation (𝟏) is enough in principle. However, in practice, to achieve 
high accuracy of the calculation, we use the Kohn-Sham scheme [2] with a 
Bogoliubov extension [3] and replace 𝐸(𝜌%, 𝜌&* by 𝐸(𝜌%, 𝜌&, 𝜏%, 𝜏&, 𝐽⃡%, 𝐽⃡&; 𝜅%, 𝜅&* 
where 𝜏=(𝒓) are the kinetic density and 𝐽⃡= are the spin-current density, 𝜅= are 
the pair density (𝑞 = 𝑛, 𝑝). The definitions of these densities can be found in 
literature, e.g., [4]. Finally, this leads to the Kohn-Sham-Bogoliubov-de-Gennes 
equations: 
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where 𝑞 = 𝑛, 𝑝. Here, 𝜇= are called “chemical potentials” to control the average 
numbers of protons and neutrons, ℎ=(𝒓, 𝜎) are the single-particle Hamiltonians, 
Δ=(𝒓, 𝜎) are the pair fields which introduce the Cooper pairs and the superfluidity 
in nuclei. The pair fields are coordinate-dependent in general, and their average 
values are often called “pairing gap energy” denoted as Δ= . Equation (2) has 
solutions E𝑈I=(𝒓, 𝜎), 𝑉I=(𝒓, 𝜎)Fwith positive quasi-particle energies 𝐸I= > 0  and 
negative ones 𝐸&= < 0. In order to construct ℎ=(𝒓, 𝜎) and Δ=(𝒓, 𝜎) in the left 
hand side of Eq. (2), we need all the solutions E𝑈I=(𝒓, 𝜎), 𝑉I=(𝒓, 𝜎)F with either 
positive or negative 𝐸I=. Thus, Eq. (2) must be self-consistently solved and the 



iterative procedure is necessary. The theory is called “Hartree-Fock-Bogoliubov” 
(HFB) theory in nuclear physics. See Ref. [4,5] for more details. 
 
 
Time-dependent density functional theory and canonical-basis formulation 
The basic theorems for the ground state can be generalized to systems under a 
time-dependent external field [6, 5]. This leads to time-dependent equations: 
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where all the fields and wave functions now depend on time. The time-dependent 
external fields are included either in ℎ=(𝒓, 𝜎; 𝑡) or Δ=(𝒓, 𝜎; 𝑡). The self-consistent 
solutions of Eq. (3) describe the time evolution of the densities of a nucleus. The 
chemical potential 𝜇= is arbitrary here. In fact, the dynamics does not depend on 
the value of 𝜇=. The theory is called “Time-dependent Hartree-Fock-Bogoliubov” 
(TDHFB) theory in nuclear physics. 
 
Solution of Eq. (3) is still computationally difficult, since we have to calculate the 
time evolution of all the quasi-particle wave functions. In order to reduce the 
computational cost, we have developed an approximate method, called 
“Canonical-basis time-dependent Hartree-Fock-Bogoliubov” (Cb-TDHFB) 
method [7]. Adopting a diagonal approximation for the pair fields, we end up the 
equations for a pair of canonical states (𝜙U

=(𝑡), 𝜙UV
=(𝑡)) with 𝑞 = 𝑛, 𝑝: 
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and the equations for their occupation and pair probabilities (𝜌U
=(𝑡), 𝜅U

=(𝑡)): 
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Here, the real parameters (𝜂U
=(𝑡), 𝜂UV

=(𝑡)) are chosen as the single-particle energies, 
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pair field leads to the “Hartree-Fock+BCS” (HF+BCS) states for the calculation 
of ground states. The computational cost of Cb-TDHFB is significantly smaller 
than the full TDHFB of Eq. (3), roughly speaking, by a few to several orders of 
magnitude. See Ref. [7,8] for details. 
 
 
Linear response and finite amplitude method 
When the external fields are weak, we may linearize the TDDFT equation (3) 
and obtain the linear response equation. We have developed a method to facilitate 
the solutions of the linear response equation, called “finite amplitude method” 
(FAM) [9,10,11].  
Applying a weak time-dependent external field of a given frequency 𝜔, 𝐹(𝑡) =
𝐹(𝜔)𝑒efgh + h. c., to the ground state, 
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where (𝑎Iq, 𝑎m)  are the quasi-particle creation/annihilation operators at the 
ground state, the linear response equations are given as 

E𝐸I + 𝐸m − ℏ𝜔F𝑋Im(𝜔) + 𝛿𝐻Imno(𝜔) = −𝐹Imno(𝜔), (9) 
E𝐸I + 𝐸m + ℏ𝜔F𝑌Im(𝜔) + 𝛿𝐻Imon(𝜔) = −𝐹Imon(𝜔). (10) 

Here, (𝑋Im, 𝑌Im) are the forward and backward amplitudes, which we should to 
determine by solving Eqs. (9)  and (10) . 𝛿𝐻Im

no(on)(𝜔)  are the residual fields 
which linearly depend on (𝑋Im, 𝑌Im). The main idea of the FAM is to calculate the 
residual fields without expansion with respect to (𝑋Im, 𝑌Im). Instead, we use an 
iterative solution of the equations with the finite difference method. This will 
facilitate programing computer codes and reduce the computational cost. See Refs. 
[9,10] for the detailed formulation and [11] for numerical implementation. 
 
 
From nuclear structure to nuclear reaction 
The results of nuclear structure calculations can be used for nuclear reaction 



models. For instance, the nucleon density distribution can be used for calculation 
of the total reaction cross sections [13]. In the optical limit approximation of the 
Glauber model, the phase shift function as a function of the impact parameter 𝒃 
is given by 

𝑒fy(𝒃) = exp }−~𝑑𝒓�𝑑𝒓�𝜌�(𝒓�)𝜌�(𝒓�)Γ��(𝒔� − 𝒔� + 𝒃)� 

where 𝒔�(�) are the transverse component of the projectile (target) coordinates, 
Γ��(𝒔� − 𝒔� + 𝒃) are the nucleon-nucleon profile function, and 𝜌�(�)(𝒓) are the 
projectile (target) density distributions. The total reaction cross section is given 
as integration over 𝒃, 

𝜎� = /𝑑𝒃𝑃(𝒃) 

with the reaction probability 
𝑃(𝒃) = 1 − W𝑒fy(𝒃)W

n 
The density distributions can be also used for calculation of the folding potentials. 

𝑈(𝒓) = ~𝑑𝒓�𝑑𝒓�𝜌�(𝒓�)𝜌�(𝒓�)𝑣��(𝒓 − 𝒓� + 𝒓�) 

The nucleon-nucleus optical potentials can be calculated in a similar way [14]. 
 
 
Numerical calculations with 3D coordinate-space representation 
To perform the numerical calculations with (TD)DFT, we must choose the basis 
to represent each (quasi-)particle state. The choice of the basis is arbitrary, but 
depends on the purpose and the adopted energy density functional. We use the 
Skyrme energy density functional, and it is convenient to adopt the three-
dimensional (3D) coordinate space discretized in mesh as the basis. Therefore, 
the quasi-particle wave functions in Eq. (2) are given by vectors, 
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where 𝑀 is twice of the number of discretized mesh points. The factor of two 
comes from the spin degrees of freedom. Accordingly, the single-particle 



Hamiltonian ℎ= and the pair fields Δ= are given by 𝑀 ×𝑀 matrices. However, 
due to the zero-range nature of the Skyrme energy density functional, the matrix 
is almost diagonal, except for kinetic terms and a few derivative terms. Therefore, 
the coordinate-space representation is an effective way to perform the calculations. 
 
The time-dependent simulation can be done with the same coordinate and real-
time representation. The time is also discretized with a mesh Δ𝑡, and the time-
dependent quasi-particle states at 𝑡f = 𝑖 × Δ𝑡 are expressed as vectors in Eq. (3): 
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In the canonical-basis TDHFB equations (4) and (5), the same representation 
in the coordinate space and the real time is adopted for the canonical basis states. 
See Refs. [7,8] for details. 
 
In the linear response equation, the forward and backward amplitudes are also 
represented in the mesh space. Instead of time, they are functions of frequency 𝜔. 
Thus, we also discretize 𝜔 and solve the FAM equations (9) and (10). For the 
iterative solver, we use either the generalized conjugate residual method or the 
modified Broyden method. See Refs. [9,10,11] for details. 
 
The calculations of properties provided in InPACS and Dens have been 
performed as follows: 
(1) Ground-state deformation and other properties shown [8,12] (InPACS) 
   Method: HF+BCS 
   Adopted energy density functional: SkM*+monopole pairing 
   Representation: 3D coordinate mesh representation 
   Symmetry restriction: None 
(2) Proton and neutron density distributions [14] (InPACS) 
   Method: HFB 
   Adopted energy density functional: Sly4+mixed pairing 
   Representation: 1D coordinate mesh representation 



   Symmetry restriction: Spherical shape 
(3) Photoabsorption cross sections [8,12] 
   Method: Cb-TDHFB 
   Adopted energy density functional: SkM*+monopole pairing 
   Representation: 3D coordinate mesh representation 
   Symmetry restriction: None 
(4) Proton and neutron density distributions [8,12] (Dens) 
   Method: HF+BCS 
   Adopted energy density functional: SkM*+monopole pairing 
   Representation: 3D coordinate mesh representation 
   Symmetry restriction: None 
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